NVIS Antenna Design Theory, Modeling, and Practical Applications By W5JCK Copyright © 2009, by Ceburn Jack Swinden #### Preface I am very much indebted to the research and data from many hams, especially the notes of L. B. Cebik, W4RNL, SK (2008). # Scope of this Presentation #### This presentation will do the following: - Examine NVIS antenna theory - Examine antenna models - Provide a basis for determining antenna installations #### This presentation will *NOT* do the following: - Suggest which antenna is best - Provide construction details for antennas #### **Presentation Outline** - Scope of Presentation - 2. What is NVIS? - 3. Terminology - 4. Skywaves & Ground waves - 5. Usable bands for NVIS - 6. Basic design criteria - 7. Debunking the Reflector Myths - 8. Fixed stations - Field stations - 10. Size restrictions and limitations ### What is NVIS? - NVIS stands for Near-Vertical Incidence Skywave radio propagation. - NVIS is used for short range communications, that is out to about 200 to 300 miles. - The many purposes for NVIS propagation includes military communications and emergency communications (EMCOMM). # Some Really Boring Terms - Maximum Usable Frequency (MUF) - Critical Angle of Radiation - Vertical-Incidence Critical Frequency ## Maximum Usable Frequency (MUF) - The highest frequency at any given time and for any given set of circumstances that can be refracted off the ionosphere - MUF is constantly changing - Frequencies higher than the MUF will pass through the ionosphere and be heard by ET ## **Critical Angle of Radiation** - The steepest angle at which a radio signal can be refracted by the ionosphere at any given time and for any given set of circumstances - Critical Angle of Radiation is constantly changing - Radio signals at angles greater than the Critical Angle of Radiation will pass through the ionosphere and be heard by ET ### Vertical-Incidence Critical Frequency - The MUF for local skywave high-angle communication - Vertical-Incidence Critical Frequency is constantly changing - Vertical-Incidence Critical Frequency averages between 2 and 13 MHz for the F-layer, ranging from 2 MHZ during nighttime at the lowest point of the solar cycle to 13 MHz during the daytime at the highest point of the solar cycle # Skywaves & Ground waves Antennas produce two kinds of radio propagation waves: - Skywaves - Ground waves # Ground wave propagation - Ground waves travel close to the ground - Ground waves bend downward slightly more than the curvature of the Earth - As frequency increases, maximum ground wave distance decreases # Skywave propagation - Solar radiation creates free electrons and positively charged ions in the ionosphere - When the ionization is dense enough, and the radio wavelength is long enough, the radio wave is bent back toward Earth - Daytime conditions usually favor the 40m ham band - Nighttime conditions usually favor the 8om ham band ### **Usable Ham Bands for NVIS** Not all ham bands or reliable for NVIS communication. So let us examine the best bands to use, and when. #### Which bands should I use? - Remember that Vertical-Incidence Critical Frequency *averages* between 2 and 13 MHz, so we can eliminate 20m band and all higher bands. - 30m is marginal, and 160m requires a huge antenna, so we can eliminate them as well. - That leaves us with the 8om, 6om, and 4om bands that are traditionally used for reliable NVIS operation. #### What time is best for each band? - The D Layer exists during the daytime, then fades away after dark. Since the D Layer absorbs radiation in the upper MF and lower HF range, it makes 80m unreliable for NVIS operation during the daytime. After dark when the D Layer dissipates, 80m becomes reliable. - During the daytime 40m is reliable for NVIS operation. However, it is not reliable at nighttime. #### What time is best for each band? • There is a lag time between daytime and nighttime, and vice versa, when 8om and 4om can be unreliable. 6om can fill this void. However, it is low power (50 watts PEP) and amateur radio can only use it on a secondary basis. # To sum up: Useable NVIS Bands - Daytime: 40m is the most reliable - **Twilight:** While the D Layer dissipates, 60m might be reliable - **Nighttime:** 8om is the most reliable - **Dawn:** While the D Layer is forming, 60m might be reliable # **NVIS Antenna Design Criteria** - Maximum Gain and Zenith Gain - Broadside and Endwire Beamwidths (Radiation Pattern) - Bandwidth - Installation Height above Ground - Ground (Soil) Quality ### Maximum Gain and Zenith Gain Dipole ½-λ above ground # 2D Beamwidths (max. gain to -3 dB) Dipole ½-ß above ground NVIS dipole #### 3D Beamwidths Broadside to Wires Dipole ½-λ above ground ## 3D Beamwidths (horiz. & endwire) Dipole ½-λ above ground #### 3D Radiation Pattern Dipole ½-λ above ground # **Propagation Patterns** Dipole ½-λ above ground NVIS dipole # Mapped Propagation Patterns 1 Dipole ½-λ above ground # Mapped Propagation Patterns 2 Dipole ½-λ above ground #### Bandwidth We can define the antenna's bandwidth as the part of the band that can be tuned to 2:1 SWR or lower, preferably without the aid of a tuner. # Installation Height - Installation height is very important - The optimum height for NVIS reflects the highest Zenith Gain - Notice how height affects the impedance # Ground (Soil) Quality - As soil quality degrades, the optimum height of the NVIS increases - As soil quality degrades, the broadside beamwidth increases in ratio to the endwire beamwidth | 40m dipole | | | | | | | | | | | |-----------------|---------|-------------|----------|----------|--------|--------|--|--|--|--| | Soil
Quality | Height | Max
Gain | BS
BW | EW
BW | Feed R | Feed X | | | | | | Very
Good | 0.175 λ | 7.15 dBi | 109.0 | 66.2 | 64.16 | 11.37 | | | | | | | | | | | | | | | | | | Average | 0.195 λ | 6.09 dBi | 119.0 | 67.0 | 72.21 | 1.76 | | | | | | | | | | | | | | | | | | Very
Poor | 0.205 λ | 4.86 dBi | 129.0 | 67.8 | 73.90 | -7.76 | | | | | # Debunking Reflector Myths The myth states that a single wire (parasitic) reflector placed directly below the NVIS dipole will turn the dipole into a "cloud burning", 2-element HF yagi pointed straight upwards. The implication is that a parasitic reflector will greatly enhance an NVIS antenna. # Two Types of Reflectors - **Parasitic Reflector:** a single wire reflector appx. 1.05 times the length of the driver element (dipole wires) and elevated 0.01- λ to 0.06- λ above the ground - Planar Reflector: a series of 9 or more equal distanced, parallel wires centered beneath the NVIS antenna creating a rectangular screen that is 1.2- λ by 0.8- λ #### Parasitic Reflector - A 2-element yagi elevated at ½-λ above ground and pointing to the horizon can yield 3 dB gain - A parasitic reflector near the ground and below an NVIS dipole or 1-λ loop only yields 0.2 dB to 0.7 dB gain, depending on soil quality, and it will decrease the bandwidth of the antenna by about 25% - If placed below an NVIS Inverted Vee the bandwidth will decrease by 50% or more #### Planar Reflector - A planar reflector placed on the ground below an NVIS dipole, 1-λ loop, or Inverted Vee yields about 1 dB gain - It has a negligible effect on the antenna's bandwidth - It requires appx. 2800 feet of wire for 80m or 1476 feet for 40m - It requires a space of 311 ft x 207 ft for 80m or 164 ft x 109 ft for 40m ## **Fixed Station Antennas** In this section we look at the optimum installations of several types of NVIS antennas. By "fixed station" I mean a permanent location which affords us better opportunity to optimize our antenna than would a temporary field location. In the next section we will look at some practical field installations. NOTE: All antennas in this presentation were modeled using AWG #14 copper stranded, insulated wire. # NVIS Dipoles (L=0.4806- λ) | 8om Dipole
Length = 0.4806-λ | | | 4om Dipole
Length = 0.4806-λ | | | | |---------------------------------|---------------------|----------|---------------------------------|---------------------|----------|--| | Soil | Height | Gain | Soil | Height | Gain | | | Very
Good | 0.165 λ
41.61 ft | 7.40 dBi | Very
Good | 0.175 λ
23.91 ft | 7.15 dBi | | | Avg. | 0.185 λ
46.66 ft | 6.42 dBi | Avg. | 0.195 λ
26.64 ft | 6.09 dBi | | | Very
Poor | 0.195 λ
49.18 ft | 5.13 dBi | Very
Poor | 0.205 λ
28.00 ft | 4.86 dBi | | # **NVIS Dipoles** ## NVIS 1-λ Loops | | Dipol
h = 1.0248 | | | 40m Dipole
Length = 1.0296-λ | | | | | | |--------------|---------------------|----------|--|---------------------------------|---------------------|----------|--|--|--| | Soil | Height | Gain | | Soil | Height | Gain | | | | | Very
Good | 0.165 λ
41.61 ft | 7.96 dBi | | Very
Good | 0.175 λ
23.91 ft | 7.74 dBi | | | | | | | | | | | | | | | | Avg. | 0.185 λ
46.66 ft | 7.04 dBi | | Avg. | 0.195 λ
26.64 ft | 6.76 dBi | | | | | | | | | | | | | | | | Very
Poor | 0.195 λ
49.18 ft | 5.85 dBi | | Very
Poor | 0.205 λ
28.00 ft | 5.64 dBi | | | | ## NVIS 1-λ Loops #### **NVIS Inverted Vees** | | Inverte
h = 0.4820 | | | 40m Inverted Vee
Length = 0.4820-λ | | | | | |--------------|-----------------------|----------|--|---------------------------------------|---------------------|----------|--|--| | Soil | Height | Gain | | Soil | Height | Gain | | | | Very
Good | 0.235 λ
59.27 ft | 6.42 dBi | | Very
Good | 0.235 λ
32.10 ft | 6.19 dBi | | | | | | | | | | | | | | Avg. | 0.245 λ
61.79 ft | 5.52 dBi | | Avg. | 0.255 λ
34.83 ft | 5.24 dBi | | | | | | | | | | | | | | Very
Poor | 0.255 λ
64.31 ft | 4.33 dBi | | Very
Poor | 0.255 λ
34.83 ft | 4.11 dBi | | | #### **NVIS Inverted Vees** ### NVIS 104' 80m/40m Doublet (with 33.5' 450 Ω ladderline) | | | 8om | 6om | 4om | |---------|--------------|---------------------|------------------------------------|-----------------------------------| | Height | Soil | Gain / R | Gain / R | Gain / R | | 35 feet | Very
Good | 7.16 dBi
29.01 Ω | 7.40 dBi
477.50 Ω | 7.14 dBi
55.76 Ω | | | | | | | | 35 feet | Avg. | 5.90 dBi
34.20 Ω | 6.43 dBi
537.10 Ω | 6.34 dBi
54.92 Ω | | | | | | | | 35 feet | Very
Poor | 4.40 dBi
39.00 Ω | 5.15 dBi 610.00Ω | 5.30 dBi 53.57Ω | ### NVIS 104' 80m/40m Doublet Comparison of radiation patterns **NOTE:** These radiation patterns reflect signal coverage at 4.59 dBi for each antenna shown in order to better compare them to the beamwidth of the dipole installed at $\frac{1}{2}$ - λ , which has a beamwidth of 7.59 to 4.59 dBi. ### Field Station Antennas In this section we look at less than the optimum, but practical, installations of a few types of NVIS antennas at temporary field locations. NOTE: All antennas in this presentation were modeled using AWG #14 copper stranded, insulated wire. # Dipoles | Practical Field Installation | | | | Optimum Fixed Installation | | | | | | |------------------------------------|-------------|--------------|---|----------------------------|---|----------|-------|-------|--| | 80m (3.9 MHz) installed at 35 feet | | | 80m (3.9 MHz) installed at optimum height | | | | | | | | Soil | Zen Gain | BS BW | EW BW | Soil | Height | Zen Gain | BS BW | EW BW | | | Very Good | 7.30 dBi | 101.6 | 64.4 | Very Good | 41.61 ft | 7.40 dBi | 105.6 | 65.4 | | | Average | 6.07 dBi | 106.8 | 65.2 | Average | 46.66 ft | 6.42 dBi | 115.0 | 67.0 | | | Very Poor | 4.59 dBi | 115.8 | 66.8 | Very Poor | 49.18 ft | 5.13 dBi | 126.4 | 68.2 | | | | | | | | | | | | | | 40m (7.2 | MHz) instal | led at 25 fe | eet | 40m (7.2 l | 40m (7.2 MHz) installed at optimum height | | | | | | Soil | Zen Gain | BS BW | EW BW | Soil | Height | Zen Gain | BS BW | EW BW | | | Very Good | 7.14 dBi | 110.4 | 66.7 | Very Good | 23.91 ft | 7.15 dBi | 109.0 | 66.2 | | | Average | 6.07 dBi | 116.4 | 66.4 | Average | 26.64 ft | 6.09 dBi | 118.8 | 67.0 | | | Very Poor | 4.78 dBi | 124.8 | 67.0 | Very Poor | 28.00 ft | 4.86 dBi | 129.0 | 67.8 | | # 1-λ Loops | Praction | cal Field | l Install | ation | Optimum Fixed Installation | | | | | | |------------------------------------|-------------|--------------|------------|---|----------|----------|-------|-------|--| | 80m (3.9 MHz) installed at 35 feet | | | 80m (3.9 l | ı | | | | | | | Soil | Zen Gain | BS BW | EW BW | Soil | Height | Zen Gain | BS BW | EW BW | | | Very Good | 7.87 dBi | 81.8 | 67.8 | Very Good | 41.61 ft | 7.96 dBi | 84.7 | 69.0 | | | Average | 6.70 dBi | 85.3 | 68.6 | Average | 46.66 ft | 7.04 dBi | 92.0 | 70.8 | | | Very Poor | 5.32 dBi | 91.8 | 70.8 | Very Poor | 49.18 ft | 5.85 dBi | 101.8 | 72.2 | | | | | | | | | | | | | | 40m (7.2 | MHz) instal | led at 25 fe | eet | 40m (7.2 MHz) installed at optimum height | | | | | | | Soil | Zen Gain | BS BW | EW BW | Soil | Height | Zen Gain | BS BW | EW BW | | | Very Good | 7.73 dBi | 88.2 | 70.4 | Very Good | 23.91 ft | 7.74 dBi | 87.0 | 69.8 | | | Average | 6.74 dBi | 92.6 | 70.0 | Average | 26.64 ft | 6.76 dBi | 95.0 | 70.8 | | | Very Poor | 5.57 dBi | 99.1 | 70.8 | Very Poor | 28.00 ft | 5.64 dBi | 104.0 | 71.8 | | ## Inverted Vees with 30° Angle | Praction | cal Field | l Install | ation | Optimum Fixed Installation | | | | | | |------------------------------------|-------------|--------------|---|---|----------|----------|-------|-------|--| | 80m (3.9 MHz) installed at 45 feet | | | 80m (3.9 MHz) installed at optimum height | | | | | | | | Soil | Zen Gain | BS BW | EW BW | Soil | Height | Zen Gain | BS BW | EW BW | | | Very Good | 5.93 dBi | 101.8 | 81.4 | Very Good | 59.27 ft | 6.42 dBi | 111.6 | 78.5 | | | Average | 4.59 dBi | 107.2 | 80.4 | Average | 64.31 ft | 5.52 dBi | 119.6 | 77.4 | | | Very Poor | 3.14 dBi | 116.4 | 79.8 | Very Poor | 64.31 ft | 4.33 dBi | 130.4 | 76.4 | | | | | | | | | | | | | | 40m (7.2 | MHz) instal | led at 35 fe | eet | 40m (7.2 MHz) installed at optimum height | | | | | | | Soil | Zen Gain | BS BW | EW BW | Soil | Height | Zen Gain | BS BW | EW BW | | | Very Good | 6.17 dBi | 117.8 | 78.8 | Very Good | 32.10 ft | 6.19 dBi | 113.2 | 78.2 | | | Average | 5.24 dBi | 123.8 | 76.8 | Average | 34.83 ft | 5.24 dBi | 123.4 | 76.8 | | | Very Poor | 4.11 dBi | 131.2 | 75.6 | Very Poor | 34.83 ft | 4.11 dBi | 131.0 | 75.6 | | # **End of Presentation**